184

Bioelectromagnetism

Lin, C., Robertson, D.E., Ahmad, M., Raibekas, A.A., Jorns, M.S., Dutton, P.L., and Cashmore, A.R.

1995. Association of favin adenine dinucleotide with the Arabidopsis blue light receptor CRY1.

Science 269(5226):968–970.

Liu, B., Liu, H., Zhong, D., and Lin, C. 2010. Searching for a photocycle of the cryptochrome photorecep­

tors. Curr Opin Plant Biol 13(5):578–586.

Liu, H., Liu, B., Zhao, C., Pepper, M., and Lin, C. 2011. Te action mechanisms of plant cryptochromes.

Trends Plant Sci 16(12):684–691.

Lohmann, K.J., and Lohmann, C.M.F. 1993. A light-independent magentic compass in the leatherback

sea turtle. Biol Bull 185:149–151.

Maeda, K., Henbest, K.B., Cintolesi, F., Kuprov, I., Rodgers, C.T., Liddell, P.A., Gust, D., Timmel, C.R.,

and Hore, P.J. 2008. Chemical compass model of avian magnetoreception. Nature 453(7193):

387–390.

Maeda, K., Robinson, A.J., Henbest, K.B., Hogben, H.J., Biskup, T., Ahmad, M., Schleicher, E., Weber,

S., Timmel, C.R., and Hore, P.J. 2012. Magnetically sensitive light-induced reactions in cryp­

tochrome are consistent with its proposed role as a magnetoreceptor. Proc Natl Acad Sci USA

109(13):4774–4779.

Maeda, K., Storey, J.G., Liddell, P.A., Gust, D., Hore, P.J., Wedge, C.J., and Timmel, C.R. 2015. Probing

a chemical compass: novel variants of low-frequency reaction yield detected magnetic resonance.

Phys Chem Chem Phys 17(5):3550–3559.

Maeda, K., Wedge, C.J., Storey, J.G., Henbest, K.B., Liddell, P.A., Kodis, G., Gust, D., Hore, P.J., and

Timmel, C.R. 2011. Spin-selective recombination kinetics of a model chemical magnetoreceptor.

Chem Commun 47(23):6563–6565.

Maier, E.J. 1992. Spectral sensitivities including the ultraviolet of the passeriform bird Leiothrix lutea. J

Comp Physiol A 170:709–714.

Malhotra, K., Kim, S.T., Batschauer, A., Dawut, L., and Sancar, A. 1995. Putative blue-light photore­

ceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to

DNA photolyase contain the two photolyase cofactors but lack DNA repair activity. Biochemistry

34(20):6892–6899.

Mazzotta, G., Rossi, A., Leonardi, E., Mason, M., Bertolucci, C., Caccin, L., Spolaore, B., Martin, A. J.,

Schlichting, M., Grebler, R., Helfrich-Forster, C., Mammi, S., Costa, R., and Tosatto, S. C. 2013. Fly

cryptochrome and the visual system. Proc Natl Acad Sci USA 110(15):61636168.

Mitsui H., Maeda T., Yamaguchi C., Tsuji Y., Watari R., Kubo Y., Okano K. and Okano T. 2015.

Overexpression in yeast, photocycle, and in vitro structural change of an avian putative magneto-

receptor cryptochrome4. Biochemistry 54(10):1908–1917.

Miura, T., Maeda, K., and Arai, T. 2003. Efect of coulomb interaction on the dynamics of the radical

pair in the system of favin mononucleotide and hen egg-white lysozyme (HEWL) studied by a

magnetic feld efect. J Phys Chem B 107:6474–6478.

Möller, A., Gesson, M., Noll, C., Phillips, J., Wiltschko, R., and Wiltschko, W. 2001. Light-dependent

magnetoreception in migratory birds previous exposure to red light alters the response to red

light. In: Orientation and Navigation—Birds, Humans and Other Animals. Royal Institute of

Navigation, Oxford, pp. 6-1–6-6.

Möller, A., Sagasser, S., Wiltschko, W., and Schierwater, B. 2004. Retinal cryptochrome in a migra­

tory passerine bird: a possible transducer for the avian magnetic compass. Naturwissenschafen

91(12):585–588.

Mora, C.V., Acerbi, M.L., and Bingman, V.P. 2014. Conditioned discrimination of magnetic inclination

in a spatial-orientation arena task by homing pigeons (Columba livia). J Exp Biol 217(23):4123–4131.

Mora, C.V., Davison, M., Wild, J.M., and Walker, M.M. 2004. Magnetoreception and its trigeminal

mediation in the homing pigeon. Nature 432(7016):508–511.

Mouritsen, H. 2018. Long-distance navigation and magnetoreception in migratory animals. Nature

558(7708):50–59.